Feature selection for urban land cover classification employing genetic algorithm
نویسندگان
چکیده
Feature selection has attained substantial research interest in image processing, computer vision, pattern recognition and so on due to tremendous dimensional reduction analysis. This addresses a genetic algorithm based feature strategy for urban land cover classification. The principal purpose of this is monitor the alterations satellite imagery planning. method object classification by detecting area given with knowledge visual information from remote sensing images. system organized through multilayer perceptron (MLPGA). Experimental results explicitly indicate that MLPGA hybrid procedure performs sensitivity 94%, specificity 90% precision 89%, respectively. centered scheme attains better performance than counterpart methods terms accuracy.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملA Robust Texture Analysis and Classification Approach for Urban Land-Use and Land-Cover Feature Discrimination
Attempts to analyze urban features and to classify land use and land cover directly from high-resolution satellite data with traditional computer classification techniques have proven to be inefficient for two primary reasons. First, urban landscapes are composed of complex features. Second, traditional classifiers employ spectral information based on single pixel value and ignore a great amoun...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملRandom Forest Algorithm for Land Cover Classification
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Electrical Engineering and Informatics
سال: 2022
ISSN: ['2302-9285']
DOI: https://doi.org/10.11591/eei.v11i2.3399